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TESTING AND REFINING A CORE THEORY OF

HUMAN PLAUSIBLE REASONING

1. Introduction

In a previous paper (Collins & Michalski, 1989) we presented a core
theory of human plausible reasoning based on analysis of a large set of
people's answers to everyday questions about the world (Collins 1978).
The theory was characterized in terms of Michalski's (1987) variable-
valued logic notation.

We can illustrate the kind of responses we analyzed in terms of two
protocols from the earlier paper (Collins & Michalski, 1989). The first
comes from a teaching dialogue on South American geography:

Protocol 1

Student: Is the Chaco the cattle country? I know the cattle country
is down there (referring to Argentina).

Tutor: I think it's more sheep country. It's like western Texas, so
in some sense I guess it's cattle country. The cattle were
originally in the Pampas, but not so much anymore.

At first the tutor tentatively rejects the possibility of lie Chaco as
cattle country, because it is sheep country. This is called a dissimilarity
transform in the theory; cattle courtry and sheep country are dissimilar
enough that the tutor thinks cattle are unlikely. But then a similarity
transform leads to an affirmative conclusion, which partially counters the
initial negative conclusion. The Chaco is similar to western Texas with
respect to the variables that affect cattle raising (such as vegetation and
climate), so it might be possible to raise cattle there. The final inference is
outside the scope of the core theory; it is a meta-inference we have labeled
a functional alternative (Collins 19'"8; Pearl 1987). Here, the tutor implies
that because the Pampas region of Argentina has cattle, knowledge of the
fact that there are cattle in Argentina cannot be taken as evidence for
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cattle in the Chaco. This protocol also illustrates how people combine
evidence from different plausible inferences to reach a final conclusion.

The second protocol illustrates a plausible deduction. It is from a
series of questions we asked different respondents (Collins 1978).

Q. Is Uruguay in the Andes Mountains?

A. I get mixed up on a lot of South American countries (pause). I'm
not even sure. I forget where Uruguay is in South America. It's
a good guess to say that it's in the Andes Mountains because a
lot of the countries are.

The subject is making a plausible deduction called a specialization
transform in the theory. He thinks that the Andes mountains are in most
South American countries, so they are likely to be in Uruguay. There are
two certainty parameters in the theory that show up here: the higher the
frequency of countries that have the Andes, and the more typical Uruguay
is, the more certain the inference.

1.1 The Core Theory of Collins and Michalski

There are four types of expressions in the core theory of Collins and
Michalski (1989) that are shown in Table 1. The first are simple

statements consisting of a descriptor d (e.g. means-of-locomotion) applied
to an argument a (e.g. birds) and realized by a referent r (e.g. flying). The
brackets and dots around the referent indicate that there may be other
means of locomotion for birds, such as walking. The second kind of
expression involves one of four relations: GEN for generalization, SPEC for
specialization, SIM for similarity, and DIS for dissimilarity. Each relational
statement specifies a context (CX) where the first variable is the domain
over which typicality or simi.iarity are computed, and the second variable

2



Table 1
Different Types of Expressions in the Core Theory

Statements (S)
d(a) = r
means-of-locomotion(birds)= [ flying...)

Relational Statements (R)

a, REL a2 in CX (A,d) where REL = GEN, SPEC, SIM, or DIS

bird GEN robin in CX (birds, all characteristics)
chicken SPEC fowl in CX (birds, biological characteristics)
duck SIM goose in CX (birds, habitat)
duck DIS goose in CX (birds, neck length)

Mutual Implications (I)

dI(a) = r, <=> d 2 (a) = r 2

temperature(place)=warm & rainfall(place)=heavy <=> grain(place)=rice

Mutual Dependencies (D)

di(a ) <---+--> d2(a )

average temperature (place) <-----> latitude (place)
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is the descriptor(s) with respect to which typicality or similarity are

computed. The last two examples of relational statements represent the
fact that ducks and geese are similar in their habitats, but dissimilar in

neck length.

The other two types of expressions in Table I are called mutual

implications and mutual dependencies. A mutual implication specifies how

one statement is related to another statement. The example states that
warm temperature and heavy rainfall imply rice growing, and vice versa.

A mutual dependency relates two terms (e.g. latitude (place) and

temperature (place)). The example represents the belief that the average

temperature of a place is inversely related to its latitude.

Table 2 shows a pattern of eight statement transforms from the core

theory (Collins & Michalski, 1989). Given a person believes that the

flowers of England include daffodils and roses, the first four transforms all
vary the argument, England. Given no other information, it is a plausible

inference that daffodils and roses are flowers of Europe in general (a

generalization transform). Also, it is a plausible inference that Surrey,
which is a small county in England, has daffodils and roses (a specialization

transform); that Holland, which is similar to England in its climate, has

daffodils and roses (a similarity transform); and that Java, which is quite

dissimilar to England in climate, does not have daffodils and roses (a

dissimilarity transform).

The other four transforms vary the referent, daffodils and roses. If

you believe that daffodils and roses are flowers of England, it is plausible

that most temperate flowers grow there (a generalization transform), that

yellow roses grow there (a specialization transform), that peonies grow

there (a similarity transform), and that bougainvillea, a tropical plant, does

not grow there (a dissim liarity transform). These eight transforms were

one of four classes of plausible inference in the core theory.
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Table 2
Eight Transforms on the Statement 'flower-type(England)=([daffodils, roses..'

Argument-based Transforms

(1) GEN flower-type(Europe)= [daffodils, roses...)
(2) SPEC flower-type(Surrey)= (daffodils, roses...)I
(3) SIM flower-type(Holland)= (daffodils, roses...)
(4) DIS flower-type(Java)= [daffodils, roses...)

Referent-based Transforms

(5) GEN flower-type(England)= (temperate flowers...)
(6) SPEC flower-type(England)= (yellow roses ...)
(7) SIM flower-type(England)= {[peonies... )
(8) DIS f lower-type(En gland)=( (bougainvil lea ...)
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Table 3 shows how different parameters affect the certainty of these
eight plausible inferences:

-Typicality (t) affects GEN and SPEC transforms. The more typical

England is of Europe, or Surrey is of England, with respect to climate
(or any variable that affects flower growing), the more certain the
inference.

-Similarity (a) affects the SIM and DIS transforms. Hence, the more

similar Holland is to England, and the less similar Java is to England,
with respect to climate, the more certain the inference.

-Conditional Likelihood (a) reflects the degree to which climate (or
any variable that affects flower growing) determines what flowers
are grown in a place. The more effect climate has on flower growing,
the more certain any of these inferences.

*Frequencv (0) reflects the all/some distinction in logic, but as a

continuous variable. When applied to an instance like England,
frequency only makes sense if it is the frequency of daffodils and
roses in different parts of England. The more frequent daffodils and
roses are in England, the more likely they are found in Europe,
Surrey, Holland, or even Java.

-Dominance (D) applies to GEN and SPEC inferences and reflects the
degree the subset comprises a large part of the set. For example,
since Surrey in only a small part of England, the inference about
growing daffodils and roses is less certain than for Southern England
as a whole.

-Multiplicity of the argument (ga) reflects the degree to which more
than one country (the superordinate of the argument) has daffodils
and roses. Since many countries presumably have daffodils and
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Table 3
Effects of Different Parameters on Statement Transforms

Transforms Parameters Target Node
in Table 2

It a a 0 9 1 a Ar

I GEN + 0 + + + + 0 Europe

Argument- 2SPEC + 0 + + + 0 0 Surrey
Based

3 SIM 0 + + + 0 + 0 Holland

4 DIS 0 - + - 0 - 0 Brazil

5 GEN + 0 + + + 0 + Tropical Plants

Reference- 6 SPEC + 0 + + + 0 0 Yellow Roses
Based

7 SIM 0 + + + 0 0 + Peonies

8 DIS 0 - + - 0 0 - Bougainvillea

+ means higher values of parameter increase the certainty of the
inference, and - means higher values of parameter decrease the
certainty of the inference.
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roses, I a is high and the argument-based inferences are more certain
(except for the DIS inference).

-Multiplicity of the referent (gr) reflects the degree to which England
has more types of flowers (the superordinate of the referent) than
daffodils and roses. Since countries usually have many different
types of flowers, .r is high and the referent-based ir 'trences more
certain (except for the DIS inference).

In addition to these seven parameters, the certainty of each of these
inferences is affected by the certainty (y I of the person's belief in each of
the premises in the inference. For example, the more certain the person is
that England produces daffodils and roses, and that flowers depend on
climate, the more certain the inference. These various parameters are
described in more detail in the earlier paper (Collins & Michalski, 1989).

Table 4 shows how two of the inferences shown previously are
represented formally in the theory. The first shows the similarity
transform from Protocol I where the tutor inferred that cattle might be
raised in the Chaco, because it was similar to western Texas. He must have
been certain that cattle were raised in Texas (y=high), that cattle are raised
in many places other than Texas (ga=high), and that different parts of
western Texas have cattle (O=high). He seemed to think that Chaco was at
least moderately similar (a=moderate) to western Texas with respect to
variables, such as vegetation, that determine whether a place can support
cattle raising (cx=moderate likelihood). He seemed to derive only fairly low
certainty (-y=low) from this inference tnat cattle might be raised in the

Chaco.

The second inference shown is from Protocol 2 where the respondent
inferred that the Andes might be in Uruguay. He thought that the Andes
were in most South American countries, so frequency (0) was at least
moderate, and his certainty (y) about that was fairly high. He knew

Uruguay was a very typical South American country in most respects
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Table 4

Examples of Formal Representation in the Core Theory

Similarity Transform from Protocol 1

livestock (Western Texas) = cattle: y = high, ta = high, 0 = high

Chaco SIM Western Texas in CX(region, vegetation): y = moderate, a = moderate

vegetation (region) < ---- > livestock (region): a = moderate, Y = high

Chaco, Western Texas SPEC region: y= certain

livestock (Chaco) = cattle: y = moderate

Specialization Transform from Protocol 2

mountains (South American country) = Andes: 4 = moderate, y = high

Uruguay SPEC South American country in CX(country, all characteristics): r=hi2h

characteristics (country) < ---- > mountains (country): a = low, y = high

Uruguay, South American country SPEC country: y = certain

mountains (Uruguay) = Andes: y= moderate
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(T=high), but that has only a weak relation to whether a particular
mountain range is there (cx=low). So he concluded with moderate certainty
that the Andes were in Uruguay.

There were three other classes of plausible inferences in the core
theory developed by Collins and Michalski (1989), which are exemplified
in Table 5. First, there were derivations from implications and
dependencies. For example, if a person believes warm places with heavy
rainfall produce rice and that the Amazon region is warm and has heavy
rainfall, one might infer that they probably grow rice in the Amazon.
Second, there were transitivity inferences on implications and
dependencies. For example, if one believes that the humidity of a place is
directly related to its average temperature, and that the average
temperature of a place is inversely related to its latitude, then one might
plausibly infer that humidity of a place is inversely related to its latitude.
Third, there were transforms on implications and dependencies. For
example, if one believes that places with a subtropical climate produce
oranges, then one might infer that they produce other citrus fruits as well.
The different variants of these three classes of inference are detailed in
Collins and Michalski (1989).

This summarizes the core theory developed earlier. Subsequent to
the development of the core theory, we ran an experiment using a
technique developed by Michelle Baker, described in section 2. Also we
systematically examined the space of all possible inferences that could be
generated given the different kinds of expressions in the core theory.
These two efforts have led to a revised theory which we outline in section
3.
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Table 5
Examples of Other Classes of Plausible Inferences in the Core Theory

Derivations from Implications and Dependencies

temperature(place)=warm & rainfall(place)=heavy <=> grain(place)=rice
temperature(Amazon) = warm
rainfall(Amazon) = heavy
Amazon SPEC place
grain(Amazon) = rice

Transitivity Inferences on Implications and Dependencies

humidity (place) <--+--> average temperature (place)
average temperature (place) <-----> latitude (place)

humidity (place) <-----> latitude (place)

Transforms on Implications and Dependencies

climate (place) = subtropical <=> fruit (place) = [oranges...)
citrus fruit GEN oranges in CX (fruit, growing conditions)
growing conditions (fruit) < ---- > place (fruit)

climate (place) = subtropical <=> fruit (place) = (citrus fruit...)
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2. An Exneriment on Human Plausible Reasoning

In order to test whether the core theory encompassed all the
different plausible inferences that expert reasoners would make given a
partial database of facts, such as that developed for our simulation of the
core theory (Baker, Burstein, and Collins, 1987; Burstein and Collins, 1988),
we sought a method for collecting protocols of plausible inferences from a
consistent set of facts. To this end, Michelle Baker developed a matrix of
different interrelated variables in geography, crossed by countries, as
shown in Table 6. She then interviewed five different scientists (who were
not geographers) as they attempted to fill in the missing cells in the
matrix.

The experimental procedure for each subject was as follows.
Subjects were first presented with a graph showing the set of variables
from the matrix and some unlabeled and undirected links representing
possible dependencies between the variables. They were asked to put
arrowheads on the links to indicate the direction of cause and effect, and
label the arrows with their estimates of the strength of effect (a and 03) of
the variables on each other. Figure 1 shows one subject's dependency
network filled out. Some subjects added new variables, such as vegetation,
in discussing their own understanding of the interdependencies of the
domain.

Subjects were then shown the entire matrix and asked to fill in the
missing cells, in whatever order they chose. They were asked to verbalize
their reasoning as they tried to fill in each cell, and were prompted to
expand on that reasoning anytime the reasoning was unclear. The sessions
varied in length from one half hour to one and one half hours for different
subjects. Each session was recorded on audio tape and transcribed.

In analyzing the transcripts of these sessions, we sought to identify
and formalize as many of the plausible inferences as we could find, each
time considering whether the formal theory, as described in Collins and

12
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Figure 1. One subject's dependency network. (Thick arrows an
boxes were given; thin arrows, arrowheads, scales, and the rounc

box were added by the subject.)
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Michalski (1989) accounted for the observed behavior. Where there were
discrepancies, we considered how the theory was inadequate, and
considered possible extensions and their ramifications. This section
discusses some selected samples of these protocols and the issues they
raised.

2.1 A Sample Protocol

It became clear in analyzing the protocols that there were a number
of inference patterns that our experimental approach tended to highlight.
Due to the tabular presentation of the information about different
countries, it was as easy to reason backwrds from things normally
considered effects as it was to reason forward, to plausibly infer values for
the variables in those effects from the variables that they depended on. It
also made it easier for people to correlate a number of variables for
several different places when reasoning in both the forward and backward
directions.

One example of an issue that arises in uncertain abductive reasoning
from effects to causes is found in the protocol of a subject (Subject 1) who
tried to use the value for the amount of available fresh water supply in
Italy to reason backward to infer the value for precipitation in Italy. In
the matrix, there were two variables that directly affected water supply.
The principal one was a qualitative value (light, moderate, abundant) for
the average amount of precipitation of the country. The second was a
variable indicating whether there were any rivers in the country or not
(yes or no). For Italy, the water supply was listed as being moderate, and
the column labeled HAS-RIVER? had value YES.

ProtocoLlQ

SI: Let's go back and do Italy first then... What the mountains tell you is
that increases the precipitation. And the Mediterranean climate tells
you that it doesn't typically have a lot; Mediterraneans tend to be
fairly dry climates. So my guess about Italy is that it probably... but
the fresh water supply also implies.., well it could get its fresh water

15



all from the rivers, so the moderate fresh water supply... because
with Egypt had moderate and that other one I inferred was
moderate. My inclination would be to say that implies that there is
not a lot of rainfall, okay. But the mountains imply that there is
rainfall, okay. So that leads me to... I'm not sure what variables I
have for rainfall, very light and light, so I'd go for light.

There are several inferences taking place here. In the first part of
this response, the subject focused on the evidence that the Italian climate
was Mediterranean, and the fact that there were mountains. The
Mediterranean climate led the subject to infer that Italy had limited
precipitation, while the presence of mountains indicated that there would
be more rain than other, similar, lowland areas with the same general
climate. Both of these inferences are based on implications, although the
second one requires an extension to the theory that we will come back to
shortly.

In the second half of the response, the subject based his inferences
on the evidence that the fresh water supply given for Italy was moderate,
and the fact that there were rivers. As described earlier, both rivers and
precipitation are contributing factors to water supply. There are two kinds
of uncertain information here. One is the question of how much of a
contribution each of those factors can make to overall water supply, a
question for which the subject presumably had little direct knowledge.
The other problem is the lack of information of even a qualitative kind as
to the amount of water available from rivers. All the matrix supplied was
the fact that there were at least some rivers.

It appears from the pattern of thig subject's protocols, and from
subsequent questioning of the subject, that he normally treated water
supply as if it was directly dependent on precipitation, independently of
the presence of rivers. In general, either precipitation or rivers could
account for the water supply of a place, and this subject generally assumed
water supply was directly correlated with precipitation, unless there was
evidence to the contrary. This led to the incomplete comment "but the
fresh water supply also implies...". Later questioning confirmed that he
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was starting to say that the moderate fresh water supply indicated
moderate precipitation, a backward, abductive inference from the
dependency. This was quickly followed by the comparison that Egypt had
moderate water supply even though the precipitation there was very light,
because there was a river. Thus the analogy to Egypt supported the
conclusion that the precipitation was very light. By combining evidence
from three sources: the analogy to Egypt, the presence of mountains, and
the Mediterranean climate, the subject concluded that the precipitation
was probably light.

This reasoning is formalized as follows:

Terrain(place) =mountains <==> Precipitation(place) > "normal"

Terrain(italy) =mountains

(1*) Precipitation(ltaly) > "normal"

Climate(place) = Mediterranean <==> Precipitation(placc) =light

Climate(ltalv) = Mediterranean

(2) Precipitation(Italy) =light

Prec ip itation (place) <--'--> Water-supply(place)

Water-supply(ltaly) =moderate

(3) Precipitation(ltaly) =moderate

Precipitation(place) <--+--> Water- suppl y(p Iace)

Has-rivers(place) <-+- Water-supply(place)

Water-supply(italy) =moderate

Has-rivers(ltaly) =yes

(4*) Precipitation(Italy) # moderate (Discount 3)

Water- supply (Egypt) =moderate

Water-supply (Italy) =moderate

Has-rivers(Egypt) =yes

Hps-rivers(lialy) =yes

(5) Italy SIM Egypt in CX(countries, Has-rivers & Water-supply)

1 7



Precipitation(place) OR Has-rivers(place) <-- -- > Water-supply(place)

Italy SIM Egypt in CX(countries, Has-rivers & Water-supply) (from 5)

Precipitation(Egypt = very light

(6) Precipitation(Italy) = very light

Precipitation(Italy) > "normal" (from 1)

Precipitation(Italy) - light (from 2)

Precipitation(Italy) - very light (from 6)
(7*) Precipitation(Italy) = light

By this analysis, there are several issues raised in the protocol that
are not specifically covered by the core theory (indicated by *). The first is
the use in inferences I and 7 of inequalities rather than equal signs. The
consideration of the general issue of continuous variables and inequalities
will be taken up later in this and the next sections.

The first inference (1*) also raises an issue for the Collins and
Michalski (1989) theory that is implicit in the use of default values in
Minsky's (1975) frame paper. This inference was a kind of reasoning
based on a norm or default value. The logic of the reasoning is this:
Whatever is determined to be the normal value of rainfall in a place based
on other variables, mountains tend to make the rainfall higher. So if
Mediterranean climates have light rainfall, the mountains would make the
rainfall greater than light. "Normal" is a "dummy value" for the
precipitation variable used in order to carry forward the reasoning. This
dummy value is filled in by two other inferences (2 and 6) and the
average value computed from those inferences is adjusted upward in 7 to
incorporate the adjustment specified in (1*).

A third problem for the core theory occurs in inference 4, where
"counter evidence" to inference 3 is considered. This inference type has
been called a Functional Alternative meta-inference in Collins (1978), and
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is quite common. The pattern occurs when there are several variables that
independently can influence a dependent variable. This can either be
written as:

di(a) OR d2(a) <---> d3(a)

or, equivalently, but staying within the syntax of the original core theory,
as two separate dependencies:

dI(a) <---> d3(a) and d2(a) <---> d3(a)

Suppose an inference has been made from a dependency, to infer a
value for the independent variables as by:

d I (a) < --- > d3(a)

.3(a) = r for r c {high, medium, low}

dal(a) = r

Then suppose independent evidence shows that d2(a) = r, accounting for
d3(a) = r by different means. By a Functional Alternative meta-inference,
this invalidates or drastically reduces the certainty of the original
inference that concluded dl(a) = r. Thus, in the protocol, when it is
discovered that Italy has rivers, and this accounts for Italy's moderate
water supply (by analogy to Egypt), then that decreases the certainty of
inference 3 that the Italy's moderate water supply implies that it has
moderate precipitation. This rule is essentially an application of Occam's
razor to plausible inferences with dependencies. It does not constitute
evidence that the original inference was wrong, just that the evidence used
to make the inference can be accounted for by other means. The set of
meta-inferences is described most fully in Collins (1978). They are not
included in the formalized core theory of Collins and Michalski (1989), so a
full treatment of this and the other meta-inferences observed in the
protocols is still an open problem.

The fourth issue raised by this protocol that requires an extension of
the core theory occurs in inference 6. Informally, this is an extension of
the inference pattern for reasoning backwards with a dependency, to the
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case where there are multiple dependencies active. For the particular case
of inference 6 there are two things affecting the water supply of a place,

precipitation and the presence of rivers. The subject sees that there are
two places (Italy, Egypt) which are similar on the affected variable, Water-

supply, and one of the independent variables, Has-rivers. He plausibly
concludes that they are similar on the other independent variable
Precipitation. The extended rules for these dependency inferences are
shown in Section 3.

2.2 Examples of Plausible Generalization

The next portion of the protocol of Subject 1 illustrates a new

component of the theory, the formation of a generalization (in this case, the

formation of a new implication) from the water supply variables for Italy
and Egypt, and how that knowledge is used to guide his inferences about
Louisiana. In the matrix, Louisiana was given as having a subtropical
climate, abundant water supply, rivers, and a terrain of lowlands and
plains.

Protocol 4

Sl: Louisiana ... Precipitation, what is the precipitation? So the places
with just a river and very little rainfall were moderate in their fresh

water supply, and this is abundant. Now, unfortunately that is a case
where I really know that Louisiana has a lot of rainfall. But that
would be the nature of my inference, that it at least has a moderate
precipitation ... from the fresh water supply.

This protocol reveals that sometime between the earlier protocol,
where he reasoned about Egypt and Italy, and this one, he made a

generalization that what was true of Egypt and Italy was true of all places.
The generalization from Egypt and Italy is formalized as follows:
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Has-river(place) & Precipitation(place) <---> Water-supply(place)

Has-river(Egypt) = yes

Precipitation(Egypt) = very light

Water-supply(Egypt) = moderate

Has-river(Italy) = yes

Precipitation(Italy) = light (by inference 7 above)

Water-supply(Italy) = moderate

(8) Has-river(place) = yes & Precipitation(place) = light
< Water-supply(place) = moderate

This generalization is one of the new rules described in Section 3, a
generalization to form an implication from a dependency and data about a
particular case (two similar cases in this instance, although the data about
the precipitation level for Italy was inferred on the basis of the single
example of Egypt). Generalizations like inference 8, where an existing
dependency is combined with a specific example to form an intermediate
statement (the implication), are essentially the analogs in our plausible
reasoning theory of the "chunking" process in SOAR (Laird, Rosenbloom &
Newell, 1986), and explanation-based generalizations as described by
DeJong (1981) and Mitchell (1983). All of these generalization mechanisms
hinge on the combination of general causal or explanatory background
knowledge with a new specific case or cases to form a new, potentially
more useful general rule. We call the class of such generalizations
refinements.

2.3 Reasoning with Inequalities

Once the generalization just described had been formed, the protocol
given above shows how it was used. The inference is basically that places
with rivers and a little rainfall have moderate water supply, so places with

abundant water supply must get more rain. Louisiana's abundant water
supply, being greater than both Egypt and Italy's, means that it should
have greater precipitation as well.
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Has-river(place) & Precipitation(place) <--+--> Water-supply(place)

Has-river(place) = yes & Precipitation(place) = light

<==> Water-supply(place) = moderate

Has-river(Louisiana) = yes
Water-supply(Louisiana) = abundant

(9) Precipitation(Louisiana) > light (or > moderate)

In the protocol, the subject reached the conclusion that since
Louisiana had an abundant water supply, then it must have "at least
moderate" precipitation. In the formalization of this inference, we have
described the pattern as predicting simply that it should be "greater than
light", light being the corresponding value in the implication. We take
these as equivalent with respect to a flow, medium, high) scale. (For
precipitation, the term light corresponds to the more neutral referent low,
and abundant is the same as high.)

This is an example of a whole class of inferences that were not
explicitly dealt with in the original core theory. The issue is one of
reasoning with inequalities on continuous or ordered variables, in
conjunction with dependencies between those types of variables. These
inferences all depend on the presence of a specified dependency: specified
dependencies are those labeled with a + or - to indicate that an
increase/decrease in the values for a term on one side has a corresponding
positive or negative effect on the other. We will deal with this issue more
fully in Section 3.

2.4 Reasoning Using Multiple Dependent Factors

When it came time to consider which grains could be grown in
different places, subjects were faced with a situation where all of the
descriptors in the matrix were potentially relevant to some degree.
Consider again the dependency graph of Figure 1. By this graph (and, of
course, belief in this set of dependencies varied from subject to subject),
water supply, climate, soil type and terrain all directly influence what
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grains are grown, and the other variables in the chart contribute to those

four.

The pattern that emerged when subjects looked to make inferences
where a number of contributing factors were known was quite consistent.

They first tried to form generalizations, and then used those
generalizations to answer the questions. These generalization inferences
occurred quite frequently, and not always when they helped answer a
specific question. At a procedural or strategic level, we have observed two

different paths to the formation of generalizations from multiple factors.
The first is a generalization strategy based on a dependency and two

similar examples. This is really a form of guided induction. Protocol 5,
below is a clear example of this. The second strategy observed was to

form a weak generalization based on a single example and a dependency,
as described in Section 2.2, and then refine that generalization as new
confirming examples were encountered. Protocol 6 gives an example of

that strategy.

We look first at an example from Subject 1, when he was looking for

a way to answer what the terrain of the West Indies was.

Protocol 5

SI: In the West Indies I'm up to and its terrain.. I don't have any good

terrain inferences. Humid tropics. Red and Yellow [soil]. I can't infer.

So, here we have another humid tropic with rice and corn and we
had one of those in Java. So humid, tropic climates seem to be
leading to rice and corn and abundant wet precipitation.

Subject I is making two inferences here. One is that humid, tropical
climates determine abundant precipitation, which is almost by definition.
The other is the generalization that these factors determine the grains
grown to be rice and corn. We formalize the latter inference below. Since

it is common knowledge that humid, tropical places are hot and wet, our
formalization of this inference and the next several to come include the
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temperature, precipitation and water supply factors as part of the
generalizations made.

The generalization about rice and corn in this protocol is formalized
as follows:

Climate(place) & Water-supply(place) & Precipitation(place) &

Season-desc ri ption(pl ace) & Soil-type(place) &

Tempe ratu re-range(pl ace) & Terrain(place)

< --- > Grain-grown(place)

Climate(iava) = humid tropics

Prec ipit ation (Java) =abundant

Temp-range(iava) =hot

Grain-grown(Java) =rice, corn

Climate(West Indies) = humid tropics

Precipitation(West Indies) =abundant

Temp-range(West Indies) =hot

Grain- grown(West Indies) =rice. corn

(10) Climate(place) = humid tropics

& Precipitation(place) = abundant & Temp-range(place) =hot

<=> Grain-grown (place) = rice, corn

Later, this generalization was refined when Subject I came to the
following conclusions about the grains grown in Louisiana (we include a
portion of the matrix for comparison, with values in italics that the
subject had filled in previously):
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Climate Water Precip- Season Temp. Terrain Grain

Supply itation Descrip- Rane IGrown

Java: Humid Abund. Abund. No Winter Hot Mountains Rice

tronics Even Rain owlands Corn

West Humid Abund. Abund. No Winter Hot ? Rice

Indies: tropics _Very Wet Even Rain Corn

Upper Humid Abund. Very No Winter Hot Lowlands Rice

Volta: tropics Wet Even Rain VrHoi Elains Millet

Florida: Subtrop. Moder. Moderate Mild Winter Corn

Hum. trop, Abun. Abund. Long Summer ??

SEven Rain

Louisiana: Subtrop. Abund. Abund. Mild Winter Hot Lowlands ?

Long Summer Plains

Even Rain

Protocol6

SI: So, grain grown: Mild winter, long hot summer, rainfall evenly
distributed. We have abundant fresh water supply. Subtropical
climate we know. The lowlands are plains. So my picture that I'm
getting is a little bit corn and rice, but because of the abundant
rainfall, these (Java, Upper Volta) are both rices, and this (Florida) is
a corn. These are rice, this (Florida) is a [more] moderate climate. I
inferred that Java must have abundant fresh water supply so this
warm climate, rainfall evenly distributed, and abundant water
pattern seems to go with rice and corn, so it looks like rice and corn.

E What certainty is that?

SI: That's only moderate certainty. I mean even wheat.. There was a
place where ... on millet I don't have enough information. Wheat was
this dry climate thing and I think I probably... See, all these variables
interact, so the better the pattern, the better the fit.
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There are several inferences here, again based on the formation of
generalizations on several variables relating to the question being
investigated. The subject is trying to decide which factors, similar to those
present in Louisiana, correlate with different grains. The implication
developed in Protocol 5 about rice and corn is reiterated and refined here
in two different ways to conclude that both rice and corn are grown in hot
places with abundant water supply and even rain. There is also evidence
that a generalization was made earlier that wheat was a dry climate crop.
The subject declined to make a generalization about millet because there
was only one place in the matrix that listed it. The theory would certainly
have sanctioned a similarity-based inference that Louisiana could have
millet, but the subject apparently declined to make it, probably because he
was too uncertain about the conclusion.

Taking these generalizations in order, the first inference in this
protocol is the refinement of the generalization made earlier about rice and
corn. This seemed to occur in two steps. One used Java and Upper Volta as
examples to conclude that rice is grown in hot places with abundant water
supply; the other used Java and Florida to conclude that corn is grown in
humid tropical and subtropical places with abundant precipitation and a
similar set of season descriptions (mild winter, long summer, even
rainfall). Although Java was used in the original generalization, we assume
that it was reused in these refinements both because of the experimental
condition that the subject was looking at the matrix while answering, and
because the generalization refinement introduces new factors that were
not in the earlier generalization.

In formalizing this implication refinement, we have noted places
where several referents were generalized together in the implication by
placing them in brackets ([rl, r2 .... 1), in the order of their believed
frequency (0) based on the evidence used. This is consistently done for
implication, dependency and statement generalization, as described in
section 3. Thus, in the resulting implication, the temperature range of hot
dominates, as does a lowlands terrain, and rice is the most strongly
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predicted grain, with millet only weakly predicted. First we look at the
rice case:

Climate(place) & Water-supply(place) & Precipitation(place) &

Season-desc ription(pl ace) & Soil-type(place) &

Ternperature-range(pl ace) & Terrain(place)

<-*--> Grain-grown(place)

Climate(place) = humid tropics &

Precipitation (place) = abundant & Temp-range(place) =hot

<==> Grain-grown(place) = rice, corn (from 10)

Climate(Java) = humid tropics

Water-supply(Java) =abundant

Precipitation(Java) =abundant

Temp-range(Java) =hot

Season-description (Java) =no winter, even rain

Grain-grown(Java) = rice, corn

Climate(Upper Volta) = humid tropics

Water-supp y (Upper Volta) =abundant

Precipitation(Upper Volta) =abundant

Temp-range(Upper Volta) = hot, very hot

Se ason-de sc ripti on (Upper Volta) = no winter, even rain

Grain -grown(Upper Volta) = rice. millet

(11) Climate(place) = humid tropics &

Water-supply(place)=abundant & Precipitation(place) = abundant

& Temp-range(place)= [hot, very hot]

& S eason-description(pl ace) = no winter, even rain

<==> Grain -grown(pl ace)=[ rice (0 = 1) , corn (0 = .75), millet (0 = .25)]

The second generalization refinement used Florida, essentially to
increase the certainty that corn was grown in these same hot, wet places.
This case also raises the possibility of subtropical, as well as humid tropical
climates, although presumably this was not a large shift.
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Climate(place) = humid tropics (from 11)
& Water-supply(place) = abundant & precipitation(place) = abundant

& Temp-range(place) = [hot, very hot]

& S eason-description(pl ace) = no winter, even rain

<==> Grain-grown(place) = [rice, corn, millet]

Climate(Florida) = subtropical, humid tropics

Water-supply (Florida) =moderate abundant

Precipitation(Florida) =moderate abundant

Season-description(Florida) = mild winter, long summer, even rain

Grain- grown(Fl orida) = corn (no value given for Temp-range)

(12) Climate(place) = [humid tropics, subtropical]

& Water- supply(pl ace) =[abundant, moderate]

& Precipitation(place) =[abundant, moderate]

& Temp-range(place) =[hot, very, hot]

& Season -description (place) = [even rain, long summer, [no, mild] winter]

<==> Grain-grown(place) = [rice (4) = .8) , corn (0 = .8) , millet (0) = .2)

This implication was then be applied to Louisiana, as follows:

Climate(place) = [humid tropics. subtropical) (from 12)

& Water- suppl y(pl ace) =[abundant, moderate]

& Precipitation(place) =[abundant, moderate]

& Temp-ran ge (place)= [hot, very hot]

& Season-description(pl ace) = [even rain, long summer, no or mild winter]

<==> Grain -grown (place) = [rice (41 = .8) , corn (0) = .8) , millet (0) = .2)1

Climate(Louisiana) = subtropical

Water-supply(Louisiana) =abundant

Precipitation(Louisiana) =abundant

Temp-range(Louisiana) =hot

Season -descriplion (Florida) = mild-winter, long summer. even rain

(13) Grain -grown (Lou isi an a) = rice, corn y= moderate

= millet Y=low

Since Louisiana is not a perfect match to this complex implication, the
certainty of the conclusion is reduced somewhat. For example, Louisiana's
climate is subtropical, where most of the places that were considered in
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forming the generalization were humid tropical places. Also, the season
description that best matched Louisiana and predicted a grain was Florida,
although it had somewhat lower precipitation.

2.5 Using Counter Evidence to Decrease Generalization Certainty

It is interesting to note that a counterexample to each of the
generalizations just described was readily available in the data. In fact,
Subject 1 had discussed this earlier in his session. The example was Peru,
which was listed as having a mountainous terrain, a dry climate, only

moderate water supply (irrigated), rainfall only during the summer, and
growing both rice and corn. This prevented the subject from drawing
conclusions about the terrain of the West Indies by reasoning backward

from the grains grown there (rice, corn), but apparently the generalization
in the forward direction was not affected. Here is a piece of the earlier

interaction about the West Indies.

Protocol 7

SI: I can't infer anything about terrain here. One could say, well, it's like

Java in growing rice and corn, maybe it has mountains and plains. [...3
Since I believe that terrain affects grain growing. But this is a real

weak inference. I don't like it, I mean I don't know. Maybe... but the
rice and corn also is true here (Peru) and they had mountains. I
mean you could look at the corn one.. see here (Florida) there are
lowlands and plains. [...I So it looks as if corn can be grown in

lowlands, but here (Peru) it took mountains. Corn and rice and you

got mountains. So that tells you mountains and lowlands...l mean
that is like two extremes. The evidence is contradictory as far as I

am concerned.

This was a case where an attempted series of generalization
refinements failed, because it ended with an attempt to generalize to a

very dissimilar case. The effect of this is like attempting to combine two
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inferences concluding in opposite directions, an inability to conclude
anything.

Subject 2 made a similar attempt to refine an implication, leading to
much the same conclusion, when reasoning about terrain in different
places. His example also includes several different kinds of implication
generalization/refinement rules that are part of the new generalization
theory discussed in the next section. The subject first voices the
implication that if a place grows corn it tends to be plains. Where this
implication came from is not indicated at all in the protocol, but our
conjecture is that he may have thought of places that grow corn, such as
Illinois and Iowa, and noticed that they were on vast plains.

Protocol

E What did you just figure out about the terrain of Angola or have you
decided that you don't know?

S2: They grow corn. I would think normally that would tend to be
plains. Check it out here. So in Florida they grow corn and it's
planar. And in Java they grow rice and corn and its mountainous
and lowlands. The lowlands could be plains I suppose. In Peru they
grow corn and its mountainous, so that doesn't seem to be much of a
help. So I guess I can't really conclude that on the whole it has
plains. I'll skip it.

We formalize the first implication as having been formed by the
example of the mid'.'estern United States, as by:

Grain-grown(Iowa) = corn

Terrain(lowa) = plains

Grain-grown(Illinois) = corn

Terrain(Illinois) = plains

Iowa. Illinois SPEC place

(14) Grain-grown(place) = corn <==> Terrain(placc) = plains - Y = low

30



This is a simple generalization from common features to the effect
that places with corn tend to be plains. Given the low certainty of that
conjecture, the subject decided to check it out in the matrix to see if the

places listed there which produce corn are plains. The first case he tried
was Florida, and, indeed, its terrain had the value plains, so this increased
the certainty of the implication. We call this an Implication refinement

for positive evidence in the revised core theory described in Section 3:

Grain-grown(place) = corn <==> Terrain(place) = plains : = low

Grain-grown(Florida) = corn
Terrain(Florida) = plains

Florida SPEC place
(15) Grain-grown(place) = corn <==> Terrain(place) = plains y = moderate

Next, he considered the case of Java, where the terrain shown was

mountains and lowlands. So Java fit the implication but it did not increase
his certainty very much if at all. Finally, he considered the case of Peru
(the last place where corn was listed). The terrain in Peru was mountains,
which was clearly distinct from plains. This case reduced his belief in the
implication below threshold, much as a DIS inference in the core theory
would cancel a positive inference on the same question. The result of this

was that he was unwilling to guess at the terrain of Angola on the basis of
its growing corn. We call the inference about Peru an Implication
refinement for negative evidence in the revised core theory:

Grain-grown(place) = corn <==> Terrain(place) = plains y = moderate

Grain-grown(Peru) = corn
Terrain(Peru) = mountains

mountains DIS plains
Peru SPEC place

(16) Grain-grown(place) = corn <==> Terrain(place) = plains " = very low
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2.6 Conjunctive and Additive Combinations of Dependencies

As the examples above have indicated, this experiment has forced us
to consider in more detail how dependencies and implications are affected
by the presence of multiple contributing factors. In the core theory, when
a variable (term) was dependent on several others, each dependency could
be written separately (they could also be conjunctively combined in a

single expression). In essence, this was the same as treating the
independent terms disjunctively, since similarity-based inferences about
the dependent term could be made based on similar values for any one of
the independent terms alone. In many cases, subjects treat factors exactly
this way. For example, Subject 1 reasoned about the water supply in Java
(and other places) as being determined either by precipitation or rivers,

independently.

Protocl2 9

SI: Fresh water supply we don't know about ... It doesn't particularly
have rivers, but it has a lot of abundant precipitation, so I assume

that it has a good water supply... So I know it has abundant fresh
water supply because it has abundant precipitation.

Another subject (2) took a different approach to combining these

factors. When subject 2 tried to infer what the water supply for Florida
was, he attempted to factor into his estimate for water supply the

cumulative contributions of both rivers and rain. In the matrix, Florida
was listed as having a sub-tropical climate, moderate to abundant

precipitation, and mild winters with even rainfall throughout the year.

However, no value was given for HAS-RIVER?.

Protocol 10

S2: Florida... The things that might affect fresh water supply are
precipitation and whether there are rivers, according to this. We

don't know if there are rivers for Florida, but there is aoundant to
moderate precipitation and that certainly is an important factor. So
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I'd say on the basis of that partial evidence that its at least moderate
water supply. I can't think of a way that I can figure out from this
information whether there are rivers or not, so I guess I'd say

moderate.

In contrast with the first subject, subject 2 appears to have treated
precipitation as one of the two contributors to water supply. As a result,

he discounted the value for precipitation somewhat when estimating water
supply, because he didn't know if there were rivers in Florida.

Apparently, he was unwilling to infer that there was abundant to
moderate water supply given abundant to moderate precipitation without

knowing that there were rivers in the place as well. This pattern repeats

for the other countries where he made similar inferences, as shown below.
In places where the matrix listed rivers as present, such as Saskatchewan,

subject 2 inferred that the water supply was about the same as the
precipitation level. In places like Iran and Java that had no rivers, his

estimate of the water supply was consistently less than the precipitation

level given for that place.

Protocol II

S2: Saskatchewan is a dry climate and its got light precipitation, which
sort of corresponds to that so I would say light ... light water supply.
And I guess I would say light is greater than low.

S2: Iran has a semi-arid climate and light precipitation so I would say it
probably has a less than moderate, low water supply.

S2: Java is a humid tropical climate with abundant precipitation and no

rivers. But it probably still has... well, let's see. Rainfall evenly

distributed over the year so I would say probably moderate to

abundant water supply.

Much as he did when there was no value specified for rivers in
Florida, this subject treated a NO value for HAS-RIVER as a reason to

discount the precipitation figure in estimating water supply. For Iran, light

33



precipitation led to a low estimate for water supply (and he apparently
treated low as less than light, based on what he said in protocol 10)
because it was given as having no rivers. For Saskatchewan, he estimated
a light, but greater than low, water supply because it was listed as having
rivers and light precipitation. Similarly, Java, which had no rivers, was
estimated to have only moderate to abundant water supply despite
abundant precipitation.

In the examples from subject 2, above, it would appear that these
are not simple conjuncts. Apparently, the subject has a qualitative model
that is trying to combine the contributions of precipitation and rivers
additively. This requires that the contribution of river water to the water
supply be treated on a continuous scale. To formalize this, we introduce
the implicit descriptor RIVER-WATER and use it instead of HAS-RIVER.
The implications that relate these two descriptors we write as:

Has-river(place) = yes <==> River-water(place) > moderate

Has-river(place) = no <==> River-water(place) = very low

We then write the dependency as:

River-water(place) + Precipitation(place) <--+--> Watcr-supply(place)

Inferences using this kind of dependency require some mechanism
for combining qualitative values that are scaled similarly. For example,
the inference above about Java's water supply would look as follows, based
on the protocol:

River-water(place) + Precipitation(place) <--+--> Water-supply(place)

River-water(Java) = low

(17) Precipitation(Java) = abundant

Water-supply(Java) moderate

At this time, we are continuing to work out the details of how these
kinds of inferences can be incorporated fully into the core theory.
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3. Revisions to the Core Theory of Collins and Michalski

These protocol data, while consistent with the general framework of
the core theory developed by Collins and Michalski (1989), led us to revise
the theory to incorporate the way subjects induce new beliefs and the way
subjects reason with "greater than" and "less than." At the same time we
had begun to explore the space of all possible plausible inferences given
the different kinds of expressions in the core theory. These two influences
led to the revised theory presented in this section.

3.1 Reformulation of the Core Theory

Table I shows the types of expressions in the core theory as
originally proposed. When we considered the kinds of generalizations that
occurred in the protocols, it became clear that it was necessary to
distinguish two kinds of mutual dependencies:

(1) unspecified mutual dependencies (Du)
dI (a) < ---- > d2 (a)

latitude (place) < ---- > temperature (place)

(2) specified mutual dependencies (D s )

<+

dl (a) <- - > d2 (a)

latitude (place) <-- -- > temperature (place)

In the protocols subjects sometimes used unspecified mutual
dependencies to guide their reasoning toward more specific relationships:
either in the form of mutual implications or specified mutual
dependencies. This distinction increases the number of expression types in
the theory to five: relational statements (R), statements (S), mutual
implications (I), unspecified mutual dependencies (Du), and specified
mutual dependencies (Ds). We still use D to represent cases where either
type of dependency is possible.
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crossed with each possible expression type (2 prerrises), to see if it was
possible to construct a plausible inference leading to each of the possible
expression types as the conclusion [R, S, 1, Du, D s] x [R, S, 1, Du , D s) ---- > [R,
S, I, D u, Ds]. Then we tried the same strategy with 3 premises. This

exercise led to a reclassification of the types of plausible inferences in the

core theory as shown in Table 8.

In Table 8 the substitutions have the form that any expression (E)
can have an element in it replaced, if that element is related to another
element by some relation (R). (Examples of each class are shown later in
this section). All of the inferences about flowers shown in Table 2 were

substitutions. The transitivity inferences combine pairs of implications (I)
or dependencies (D) to yield a new implication or dependency. Derivations

are inferences where, given that one side of an implication or dependency
holds for a particular case, a person infers that the other side of the
implication or dependency also holds for that case. These three classes

were in the core theory of Collins anc Michalski (1989) though the

substitutions were called "transforms" and the transforms on implications
and dependencies were treated as a separate class of inferences from

statement transforms. This structure of the plausible inference space is
more transparent than the one presented in the earlier paper.

The fourth class of plausible inferences, called generalizations, is new

to the core theory. This class was prompted by the large number of
inductions subjects were making in the experiment to form new
hypotheses about the domain. The generalizations take two forms in the

theory. One class, called simple generalizations, combine some number of
statements and relations to form different types of expressions. The other

class of generalizations, called refinements, start from an expression and
use information about the world to further refine that expression. A
number of examples of each kind of generalization will be shown below.

37



Table 8
Classes of Plausible Inferences

1. Substitutions

E x R->E

2. Transitivities

/D x I/D -- > I/D

3. Derivations

I/D x S x R -> S

4. Generalizations (m and n indicate a variable number of expressions of

a given form)

Simple generalizations

mS x nR -> E

Refinement generalizations

ExmSxnR->E
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Tables 9 through 15 show the different types of plausible inferences
in the core theory together with examples. In the tables we have focussed
on the critical premises io each plausible inference and have simplified the
relational statements leaving out the context part of the statement. This is
done for clarity of exposition: the proper form for most of these inferences
is shown in Collins and Michalski (1989).

Table 9 includes the four types of substitution rules. The first type
of rule substitutes one element (e.g. toads) for another ci#'ment in a
relation (e.g. frogs). This set of rules is new to the theory, u, given
rewrite rules that take relational statements into statements, it was
implicitly part of the stitement transforms of the original theory. The first
rule in the set covers all the possible combinations except those involving
GEN. We have disallowed DIS as the relation in the second premise
because it leads to a conclusion with "Not," which we do not allow as a well
formed expression in the theory. The last two rules in the set handle the
special case of GEN, by treating GEN as the inverse of SPEC.

The second set of rules are simply the set of eight statement
transforms shown in Table 2. Viewing them as substitutions where a2 or
r2 are substituted for al or r, in the original expression makes clear their
relation to the other types of substitutions in the theory. The last two
types of rules allow substitution of elements in implications and
dependencies. For implications either the argument (a) or one of the
referents (r) can be replaced; for dependencies only the argument can be
replaced since there is no referent. These were called transforms on
implications and dependencies in the original paper (Collins & Michalski,
1989).

Tables 10 and 11 show the two kinds of transitivity inferences and
derivation rules in the theory. The transitivity rule on implications leads
to the construction of a new implication linking two variables (e.g., grain
and latitude) that were known to be linked to another variable (e.g.,
temperature). The transitivity rule on dependencies applies to either
unspecified or specified dependencies. For specified dependencies, signs
are combined following the rules for multiplication (same signs --- > plus,
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opposite signs --- > minus). The two derivation rules, which are the most
frequent plausible inferences in the protocols from the experiment, are

shown in Table 11. The transitivity and derivation rules are the same as
presented in Collins and Michalski (1989).
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Table 9
Substitution Rules

ExR->E

1) R xR -> R Substitution in a Relational Statement

a, REL, a2  REL=SPEC,SIM,DIS
aREL a IREL 2=SPEC,SIM

a REL Ia 2

al REL, a2
a GENa 3

a 3 RELI b 2

a1 GENa 2
a 3 REL 2 a 2

a GENa 3

frogs SPEC amphibian
toads SIM frogs
toads SPEC amphibian
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Table 9
Continued

2) S xR -> S Substitution in a Statement

d(ai)=r

a2 REL a, REL=SPEC,SIM,GEN

d(a 2 )=r

d(al)=r

a2 DIS a,

d(a 2 ) tr

d(a)=rl

r2 REL r,

d(a)=r 2

d(a)=rl

r2 DIS r,

d(a)*r 2

means -of -locomotion(bird)= [f lying...)
bobolink SPEC bird
means -of -locomotion (bobolink)= (flying...
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Table 9
Continued

3) 1 x R --- > I Substitution in an Implication

d1 (a)=r1 <=>d 2(a)=r 2

r3 REL r2 REL=SPEC, GEN, SIM

dj(a)=rj<=>d2(a)=r 3

dj(a1 )=r 1 'z=>d 2(aj)=r2

a2 REL al

d1 (a2)=rj<=>d2(a-2 )=r,2

climate(place)=subtropicalk=>fruit(place)= (oranges ...
grapefruit SIM orange
c limate(pl ace)=s ubtropical<=> fru it(pl ace)= [ grapefruit...)

4.) D x R --- > D Substitution in a Dependency

d1 (al)< --- >d 2(al)
a2 REL a, REL=SPEC, GEN, SIM

d 1(a-))<--- >d 2(a-))

Iatitude(place)< --- >temperature(place)
city SPEC place
latitude(city)< --- >temperature(city)
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Table 10
Transitivity Rules

1) 1 x I --- > I Transitivity on Implications

dl~)=r <> d2 (a) =r-

d,(a=T2<=> d3 (a) =r

d I(a) = r1 <=>d3 a=3

grain(place) = rice <=> temperature(place) = high

temperature(pl1ace) = high <=> latitude(place)=1ow
grain(place) = rice <=> latitude(place) = low

21) D x D--> D Transitivity on Dependencies

dj(a) < ---- > d-,(a)

d2 (a) < ---- > d3 (a)

d (a) <-->d (a)

number of species(place) < ---- > temperature(place)

temperature 1place) < --- > latitude(place)

number of species(place) < ---- > latitude(place)
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Table 11
Derivation Rules

1) I x S x R ---> S Derivation from an Implication

d, (al)=rl <=> d, (al)=r2

d, (a2) = r,
a2 SPEC a,

d(a2) = r2

grain(place)=rice<=>rain fal l(place)=heavy
grain(Louisiana)=rice
Louisiana SPEC place
rainfall(Louisiana)=heavy

2) DS x S x R ->S Derivation from a Dependency

dl(al) <--+--> d-2 (a,)

d1 (a2 ) = <high, medium, low>
a2 SPEC a1

d2 (a 2) = <high, medium, low>

d, (a,) <----> d2 (a,)

d, (a2 ) = <high, medium, low>
a2 SPEC a1

d2 (a2 ) = <low, medium, high>

temperature (place) <-----> latitude(place)
temperature (Amazon) = high
Amazon SPEC place
latitude (Amazon) = low
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3.2 A Theory of Generalization

The generalization rules that are prcsented in Tables 12, 13, 14 and
15 are new to the core theory. Some of them were clearly seen in the

protocols as subjects created new beliefs: for example, protocol 3 included

a case where the subject formed a new SIM statement by looking at cases,

and protocols 4 through 8 showed cases where subjects induced new

implications. Given these cases, we have tried to construct a core theory of

generalization that incorporates these cases into an overall structure that

can generate the five kinds of expressions in the core theory. The attempt

is to produce the minimal set of generalizations that in combination can

account for the way the five expression types are formed by people.

Table 12 shows our conjecture for the minimal set of generalizations

necessary to generate SPEC statements. The first rule simply allows the
inference that if some instance (or subclass) has a particularly diagnostic

feature of some class, then the instance is probably a member of the class.
The multiplicity of the referent .-, is our measure of diagnosticity: if the

multiplicity is low, then not many other classes have that property. In the

example we chose the S-curved neck as a diagnostic property of swans, but

we could have chosen the entire body shape. If something has the shape

of a swan, then it is probably a swan; though other evidence (as we shall

see) may lead one to back off that hypothesis.
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Table 12

Generalizations to form SPEC Statements

1) S x S --- > R Initial Generalization

d(A) =r: yl, 4'r

d (a) =r: ^12

a SPEC A: Y =fGi'rY1, Y2)

neck shape (swan) = S-curved
neck shape Wx~ = S-curved
x SPEC swan

2) R x 2S --- > R Refining for Positive Evidence

a SPEC A: yi

d(A) =r: Y2, 4r

d(a) r- r:

a SPEC A : 7 = 'Yi + f~i~r, Y2, 73)

x SPEC swan: yi

color (swan) = white
color Wx = white

x SPEC swan: 7Y> Yi
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Table 12

Continued

3) 2R x 2S ---> R Refining for Negative Evidence

a SPEC A: Yi
d(A) = rl: 7 2, Ir

d(a) r2 : 73

r1 DIS r2: 74

a SPEC A: 7 = 71-f(r, 71, 72, 73, 74)

x SPEC swan: -Y
color (swan) = white
color (x) = black
black DIS white
x SPEC swan: 7 < Yi

4) R x 2S ---> R Rejecting for Negative Evidence

d(A) = rl: 71, 4r

d(a) = r2 : 72

r, DIS r2 : 73

class (a) # A: 7 = f (4'r, 71, 72, 73)

color (swan) = white
color (x) = black
black DIS white
class (x) # swan
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The second rule in Table 12 shows how confirming evidence

increases the certainty of the inference. If one thinks swans are white,

and if an instance (or subclass) one thinks is a swan turns out to be white,

then that increases certainty in the hypothesis that the instance is a swan.

Again the increase in certainty depends on the multiplicity of the referent

white. The third rule shows the parallel case of disconfirming evidence. If

the object one is looking at is black, that would decrease the certainty of its

being a swan for a person who believes swans are white. The fourth rule

is an extension of the third rule; if a person has no reason to think an

instance is a member of a particular class, then if it differs on any property

of that class, it is evidence against it being in that class. Of course, in the
world of everyday reasoning, negative evidence is never as certain as

Popper (1969) might have us believe. Generalizations to form GEN

statements are a simple variant on these rules for SPEC statements.

Table 13 shows the rules for forming SIM and DIS statements.

Unlike the SPEC statements we have included the context (CX) part of the
statement, because it is integral to the way that subjects seemed to be

forming these statements in the protocols. The initial generalization to

form a SIM statement occurred in several places in the protocols analyzed

(e.g.. Protocol 4). Basically it involves identifying a descriptor (or variable)

for which two cases have the same or similar referents and constructing

the belief that the two cases are similar on that descriptor. So if Java and
the West Indies both include humid tropics, then one can infer they are

similar with respect to climate generally. Tile second rule parallels the

SIM rule, for the DIS relation: If two cases differ on a particular

descriptor, such as having short vs. long necks, one can form the statement

that they are dissimilar in neck length. It is of course possible to have

both DIS and SIM statements stored about the same cases (e.g. ducks and

geese are similar with respect to feet and dissimilar with respect to necks).

The next two rules in Table 13 allow for refinement of SIM and DIS

statements to incorporate two or more descriptors. For example, if Java

and the West Indies are also similar in that both have abundant

precipitation, then this can be added to the set of descriptors for which

they are similar. The final rule allows for the generalization of the
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descriptors on which two cases are related to a common superordinate
descriptor. So, for example, one might induce that Java and the West
Indies are similar with respect to all their climatological or geographical
characteristics, based on their similarity with respect to climate and
precipitation.
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Table 13

Generalizations to Form SIM and DIS Statements

1) 2S x 3R ---> R Initial Generalization to SIM

d(al) = r,
d(a 2 ) = r,

r1 SIM r2

a,, a2 SPEC A

al SIM a2 in CX (A,d)

climate (Java) = humid tropics
climate (West Indies) = (subtropical, humid tropics)
humid tropics SIM (subtropical, humid tropics)
Java, West Indies SPEC places
Java SIM West Indies in CX (places. climate)

2) 2S x 3R ---> R Initial Generalization to DIS

d(al)=rl
d(a 2 )=r 2
r, DIS r2
al, a2 SPEC A

a, DIS a2 in CX (A,d)

necklength (duck)=short
necklength (goose)=long
short DIS long
duck, goose SPEC birds
duck DIS goose in CX (birds, necklength)
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Table 13
Continued

3) 4R x 2S --- > R Refining a SIM generalization

a, SIM a2 in CX (A, dj)
d 2 (aj)=rj
d 2 (a 2 )=r2
r, SIM r2

a2~~ SPEC A
a, SIM a2 in CX (A, d, & d-,)

Java SIM West Indies in CX (places, climate)
precipitation (Java)=heavy
precipitation (West Indies)=abundant
heavy SIM abundant
Java. West Indies SPEC pl1ace
Java SIM West Indies in CX (places, climate & precipitation)

4) 4R x 2S --- > R Refining a DIS generalization

al DIS a2 in CX (A, dj)
d2 (a1 )=rl
d2 (a 2 )=r2
r, DIS r,
a,, a2 SPEC A

a, DIS a-) in CX (A, d, & d,)

ducks DIS goose in CX (birds. necklength)
sound (ducks)=quack
sound (geese)=honk
quack DIS honk
ducks. izeese SPEC birds
ducks DIS geese in CX (birds, necklength & sound)
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Table 13
Continued

5) 2R x S ---> R Descriptor Generalization

a, 0 a2 in CX(A, dl & d2) 0 = any relation
dI, d2 SPEC D

a2 0 a2 in CX(A,D)

Java SIM West Indies in CX(places, climate & precipitation)
climate, precipitation SPEC climatological characteristics
Java SIM West Indies in CX(places, climatological characteristics)
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Table 14 presents a set of four generalization rules for forming statements.
The first rule is the simplest case of generalization from a subclass to a

class; it is simply the argument generalization rule included in the

statement substitutions in Table 9. The idea is that if you encounter a

swan and it is white, one can infer that swans in general are white. The
parameter v represents the number of swans encountered, be it one or a

whole flock. Likewise, the second rule is the referent generalization rule

included among the statement substitutions in Table 9.

The next two rules parallel the rules for refining evidence among the

SPEC generalizations. The third rule is a refinement for negative evidence.

If you think swans are white, and you encounter a black swan, this may

lead to the idea that swans can be white or black. The frequencies one
assigns to white swans and black swans depends on the number (v) of black

and white swans encountered as is shown by the formulas. The fourth

rule is a refinement for positive evidence, and it makes it possible to

update the frequencies of different referent subclasses.
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Table 14
Statement Generalizations

1) SxR->S Argument Generalization

d(a) = r
A GEN a
d(A) = r

color(swanl)=white
swan GEN swan 1
color (swan) = (white...)

2) S x R->S Referent generalization

d(a) = {r,...}
R GEN r1

d(a) = [R...}

means of locomotion(people) = (walking...)
movement on foot GEN walking
means of locomotion (people) = movement on foot
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Table 14
Continued

3) 2S x 2R -> S Refining for negative evidence

d(A) =rj: 01,v,
d(a) =r 2: V)
rIDISr2

a SPEC A

d(A) = frI, r2...} 1: 01= = 2' V
V I+ v VI +V 2

color(swan) =white: 0 =I1

color(swanl) = black
white DIS black
swan]I SPEC swan
color (swan) = (white, black...):0 1'<1, 02 >0

4) 2S xR -> S Refining for positive evidence

d(A) =(rl, r., ... }: 01, 02, v I

d(a) =rj: v,
a SPEC A

0 vI -) 02 V I
d (A) 02,~.) Q i =

vI + V- VI+VI

color (swan)={white, black... ): 01 0

color (swani) = white
swan] SPEC swan
color (swan) = (white, black... ): 0 1 > 01 0, < 0
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Table 15 shows the set of generalizations we conjecture are sufficient

to characterize the ways that humans create implications and

dependencies. The first two rules in the set show how the common

features or the contrasting features of two arguments can be used to

construct implications and dependencies. These two rules are used by

Socratic tutors in choosing cases for comparison by students (Collins &

Stevens, 1982).

The first rule forms the hypothesis that if two arguments have two

features (or referents) in common, then the two features are linked in

some way. This is a rather uncertain inference. For example, if one

believes that Japan is in Asia and produces rice, and that China is in Asia

and produces rice, two possible conclusions follow from that: One is the

implication that if a place is in Asia, it produces rice (and vice versa). The

other is the dependency that the grains grown in a place depends on the

continent of the place.

The second rule allows three different possible conclusions based on

the fact that two arguments have contrasting features (or referents) with

respect to two descriptors. For example, if you believe that South China

grows rice and North China grows wheat, you might hypothesize three

different implications or dependencies. One is that if a place is warm, it

grows rice (and vice versa). Two is that if a place is cool, it grows wheat

(and vice versa). Three is the dependency that the grain grown depends

on the temperature of the place. These are somewhat more certain

generalizations than the common-feature generalizations, but only

marginally so. In general people might want to adduce more evidence for

either in order for the certainty to achieve some threshold where they are

willing to consider such hypotheses seriously.

The third rule was identified from the protocols, where subjects

would instantiate dependencies in terms of the referents they identified

for particular cases. In this way they would form new implications. In the

example, if a person believes that temperature' and grain are related, and

that Saskatchewan which is cool produces wheat, the person might infer

that in general places that are cool produce wheat (and vice versa).
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Table 15
Implication and Dependency Generalizations

1) 4S x 2R ---- > I/Du Generalization based on common features

d 1(al)=r1
d2(al)=r 2
d I (a2)=r,

pl-,. SPEC A
d, (A)=rl <=> d.) (A)=r-,
dj(A) < --- > d,(A)

grain(Japan) = rice
continent(Japan) = Asia
grain(China) = rice
continent(China) = Asia
Japan. China SPEC place
grain(place) = rice <=> continent(place) =Asia

grain(place) <-> continent(place)
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Table 15
Continued

2) 4S x 4R ---> I/I/Du Generalization based on contrasting features

dj(aj)=rt
d2(al)=r2

d I(a 2 )=r 3

d 2 (a 2)=r4
a,, a, SPEC A
r1 DIS r3
r2 DIS r4

dl(A)-: <=> d-,(A)=r 2

dI(A)=r 3 <=> d2(A)=r 4

d1(A) <-> d2(A)

grain(South China) = rice
temperature(South China) = warm
grain(North China) = wheat
temperature(North China) = cool
South China, North China SPEC place
rice DIS wheat
warm DIS cool

grai n(place)=rice<=>temperature( place)=warm
grain(place)=wheat<=>temperature(place)=cool
grain(pl ace)<->te mperature(pl ace)
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Table 15
Continued

3) Du x 2S x R --- > I Refining a dependency to form an implication

dI(A) <-> d,2(A)
dj(a) = r
d2(a) = r
a SPEC A
dI(A) = r, <=> d2 (A)=

grain (place )<-> te mperatu re (place)
grain ( Sas kat chewan ) = whea t
temperature(Saskatchewan )=cool
Saskatchewan SPEC pl1ace
grain(pl ace) =w heat<=>tem pe rature(pl ace) =coolI

4) 1 x 2S x 2R --- > I Refining an implication from negative evidence

di(A) = r1 <=> d,(A) = r):v 1 , ol

dj(a) = r,

d, (a) = r3: v-
a SPEC A
r.3 DIS r,

dI(A) = r1<=> d,(A) ={r2., r3) 01- V1 -02 V'
V I+ V, Vi + V-

grain( place)=wheat<=>temperaiture( place)=cool
grain(italy)=wheat
temperature( Italy )=m i Id
mild DIS cool
Italy SPEC place
grain(place)=wheait<=>temperature(plaice)=fcool,oI =.5; mild, 02'=.5)I
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Table 15

Continued

5) I x 2S x R ---> I Refining an implication from positive evidence

d (A) = r, <=> d2(A)=(i 2 , r 3 ): 01, 02, V1

d 1(a) =r

d 2 (a) =r2:V2

a SPEC A
OIVl + V2  02 VI

d (A)= rl<=>d 2 (A)={r 2 - r 3}: 0 - , 2' -v 1 + v 2  vVl 2

grain(place)=wheat<=>temperature(place)=[ cool 0=.5.; mild 0=.5)
grain(North China)=wheat
temperature(North China)=cool
North China SPEC place
grain(place)=wheat<=>temperature(place)= (cool 0=.7; mild 0=.3}

6) I x 2R ---> I Refining an implication by referent combination

di(A) = r1 <=> d2(A) = {r2, r 3 ... }
r2 , r3 SPEC R

d](A) = r, <=> d2 (A) = R

grain(place)=rice<=>cl imate(place)= ( subtropical,tropical}
tropical, subtropical SPEC hot
grain(place)=rice<=>cliimate(place)=hot
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The next two rules are used to refine implications. They parallel the

earlier refinement rules for statements. Rule 4 refines an implication to

incorporate negative evidence. For example, if one believes that places

that produce wheat are cool (and vice versa) and one encounters Italy
which has a rather mild climate, then one might infer that places that are

cool or mild produce wheat, with frequencies representing the number of

cases of each type one has encountered. Rule 5 similarly adjusts

frequencies appropriately if one encounters positive evidence.

We think these generalization rules incorporate all the ways that

subjects were forming new statements in the experiments. But we have
written the rules to be as general as possible. People often make

generalizations based on what would appear to be insufficient evidence,

particularly in settings like our experiment, but they are constantly

refining their generalizations, and often rejecting them (as in Protocol 6
with respect to millet) as too uncertain to take seriously. So the rule set

we have developed will surely produce generalizations no one would

believe if applied willy nilly. The way that people prevent making
inappropriate generalizations is by using other knowledge inferentially to
restrict the generalizations they make to beliefs consistent with what they

know in general (see Collins & Michalski. 1989).
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3.3 Reasoning with Ordered Variables and Inequalities

In analyzing the protocols from the experiment described in the last
section, we were led to extend our core theory to deal with the issue of
continuous or ordered variables and plausible reasoning with inequalities.
The core theory of Collins and Michalski (1989) treated all referents
(values for terms) as discrete values with no intrinsic relationships other
than similarity and class membership. Clearly, this was a simplification.
Variables like altitude, latitude, temperature, and even water-supply take
referents that can be mapped onto numerical scales, given appropriate
measurement techniques, and they may also be expressed qualitatively
using terms like low, medium and high. Given a set of measurements for
any one of these attributes, people quickly develop models of their normal
ranges from observations, and develop approximate ranges on those scales
that they can refer to using terms such as low, medium and high. These
qualitative terms are treated as ordered, though they are not really
mutually exclusive. Each qualitative value stands for a range or
distribution of measured values, and those ranges may overlap to some
degree. For instance, the ranges covered by low and medium might
intersect in a small range called medium-low.

Ranges on ordered scales can be considered similar to the degree that
they overlap. When one range overlaps the median or midpoint of another
range and vice versa, then the two can be considered highly similar. For
ranges and values that are not highly similar, we introduce the inequality
relations <, >, <, and >. Although we have not done a careful study of how
people interpret and compare these inexact ranges, for the sake of this
paper, we will arbitrarily treat these relations as follows: The statement
d(a) > r means that the referent of d(a) is in the range from the midpoint of
range r to the top of the scale that r is on. The statement d(a) >. r means
that the referent of d(a) is in the range from the bottom of range r to the
top of the scale that r is on. Similarly, given d(a) = ra and d(b) = rb, d(a) >
d(b) is equivalent to ra > rb, and means that rais dissimilar from rb,
because the median of ra is less than the bottom of rb and the median of rb
is greater than the top of r,.
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Having introduced the notion of explicit orderings for referents that
are ranges on ordered scales, the core theory as determined so far can be
naturally extended to allow all plausible inferences that contain statements
of the form d(a) = r to also allow the = to be replaced by any of <, >, <, and >.
For example, in a SIM-based argument transform, we would rewrite the
rule as:

d(al)- r

a2 SIM al in CX (A, D)

D(A) < ---- > d(A)
a la-. SPEC A
d(a2)- r where - was one of=,<,>,<, or>.

In addition to this slight reformulation of the inference rules of the
core theory, the introduction of inequalities yields some new
generalization, transformation and derivation inferences involving these
orderings. All of the new inferences involve specified dependencies
(dependencies of the form d1 (A)<--+-->d2(A) or dj(A)<----->d 2 (A)), where
increases or decreases in one referent value have corresponding effects on
another. Collins and Michalski (1989) (p. 35) described rules for
derivations from such dependencies between single terms, for the cases
where the referent values were expressed as low, medium and high.
Basically, for a positive dependency, a low value on di(a) implies a low
value on d2(a), medium goes to medium, and high to high. For negative

dependencies, low goes to high, medium to medium, and high to low.

Table 16 shows the rules for creating inequalities with SIM-based
transforms on dependencies and implications. These rules are much like
the SIM-based referent transform rules described in Collins and Michalski
(1989). In the SIM-based transforms of the core theory, two arguments or
referents would be compared and found similar in a context (e.g., CX(A, D)),
related to the left side of the dependency. In the new rules for generating
inequalities from directed dependencies (rules I and 2 of Table 16), the

two arguments ai and a2 are related by an inequality instead of by
similarity (as by dI(aI) < d(ai)). To extend this rule to the case where dj
was one of several factors that tol(,ether determined d 3 (by either an
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additive or conjunctive dependency), then all of the other factors d2 * are

required to be similar for al and a2 (or to differ in the same direction as

they do for dl). Rules 1 and 2 in Table 16 cover the cases where al SIM a2
in the context of these other descriptors d2*. The result is that values for

d2(a) and d2 (b) are ordered correspondingly for a positive dependency,

and ordered in the reverse direction for a negative dependency. For

example, using rule 2, if altitude and temperature are inversely correlated

for places at similar latitudes, then low places (e.g., Miami) should be
warmer than high places (e.g., Mexico City) at similar latitudes and vice

versa. When some of these other features also vary, the inference

becomes less certain. We are still developing a more complex model of
how these further deviations from similarity affect the inference and its

certainty.

Another kind of inference with inequalities corresponds to a

derivation from an implication, as described in Collins and Michalski

(1989). Rules 3 and 4 in Table 16 show these inference patterns. The

difference from the normal derivations with implications is that there

must also be a directed dependency to. specify the direction of change

between terms. Table 16 shows an example of the use of rule 3 that is
based on the dependency between precipitation, rivers and water supply

discussed in Section 2.7. If places with light precipitation and a river can
be considered to have a moderate water supply (as Egypt and Italy were

described in the protocol experiment), then one can conclude that a place

like France with rivers and greater amounts of precipitation should have a
greater overall water supply, because of the directed dependency bearing

on water supply.

As mentioned above, both of these inference forms have the

requirement that other relevant "contextual factors" are held constant. In

the dependency-based transform rules (Table 16, rules I and 2), this is

captured in the requirement that al and a-) are similar in the context of

other terms affecting the target descriptor d3 (A), (represented by
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Table 16

Inequality-generating Inferences

DxDS x 2Rx3S-->S Inequality Transforms
with Directed Dependencies

(1) dj(A) <--+--> d3(A) (2) dj(A) <-----> d3 (A)

dr(A) & d2(A)* < ---- > d3(A) d1 (A) & d2(A)*< ---- > d3(A)

al,a2 SPEC A ala2 SPEC A

a2 SIM a, in CX(A, d2(A)*) a2 SIM a, in CX(A, dz(A)*)

dl(al) = r, d (aI) =r,

dl(a2)- r1  d1(a2) r,

d3(al) =r 3  d 3 (al) =r3

d 3 (a 2) - r 3  d 3 (a2) -r 3

Notes: d2 (A)* stands for all other terms that d3(A) depends on.

- is one of <, >, <, or >, consistently within a rule, and -- is its inverse.

altitude(place) <-----> temperature(place) in CX(places, latitude)

altitude(place) & latitude(place) < .--- > temperature(place)

Miami, Mexico City SPEC place

Miami SIM Mexico City in CX(places, latitude)

altitude(Mexico City) = high

altitude(Miami) < high

temperature(Mexico City) = moderate
temperature(Miami) > moderate
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Table 16

Continued

DS x I x R x 2S ->S Derivations from Implications with

Directed Dependencies

(3) dj(A) <-->d 3 (A)

dj(A) =rl & d-2(A) = r-2* <==> d3(A) r3

a SPEC A

d 2(a) r,

dj(a) r

d 3(a) r3

(4) di(A) <-----> d3 (A)

dj(A) =r, & d-'(A) = r-2* <==> d3 (A) =r 3

a SPEC A

d,)(a) r,

dj(a) r

d3(a) r

Notes: d-2(A) = r-)* stands for all other terms in the implication.

-is one of <. >, <, or >, con sistentlv within a rule, and -- Is its inverse.

precipitation(place) & has-river(place) <--+--> water-supply(place)

precipitarion(place) = very light & has-river(place) =yes <==>

water-supply(place) =moderate

France SPEC place

has-river(France) = yes

precipitation(France) > v'ery' light

water- s uppl y(France) > moderate
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d2(A)*< ---- > d3(A)). In the rule for a plausible derivation from an
inequality and an implication, this requirement is reflected in the need for

the referents of all other terms on the left hand side of the implication (&

d2(A)= r2* ...) to be similar to the corresponding referent of d2(a) for the
target example a, or ordered in the same direction. In the example

presented with the table, the inequality derivation only works because

France has rivers, as required by the left hand side of the implication.

Of course, there must also be ways of forming specified
dependencies. The most straightforward of these looks much like the

formation of a dependency by generalizing on contrasting features (see
Table 14, part 2). This is shown in Table 17 for the simple case of

comparing attributes of two exemplars. As an example of this !yve of

generalization (Table 17, Rule 1) we show how one might derive the
dependency that the latitude of a place is inversely correlated with its
temperature. Comparing Alaska and Equador on these variables, we see

that Alaska has a much higher latitude and a much lower average

temperature than Equador. Generalizing on these facts gives the negative
dependency. Much the same rules can be used to refine an unspecified

dependency, essentially using the dependency to pick out the attributes

that need to be compared. For instance, the generalization from Alaska

and Equador would be made more certain if one already knew that there
was a dependency between latitude and temperature, but the form of that

relationship was unknown until the exact data was considered.

Another way to derive a directed dependency is by' using two
implications that address the same pair of descriptors. These

generalization rules are much the same as rules I and 2. with pairs of

statements rewritten as implications over the class A containing al and a-.
An example of rule 3 is shown in Table 17. As in the previous example,

the referents of the corresponding terms in the implications are placed in
correspondence and their values compared. Since the direction of shift
from tropical place to polar place is opposite on the two descriptors, a

negative dependency is formed.
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Table 17

Generalizing Based on Inequalities

4S x 2R -- > Ds Generalizing to Specified Dependencies

(1 di(al) = ri (2) di(al) = ri

d2(al) = r2d-(al) = r2)

d 1(a2) = r3 dl1(a2) = r

d2(a2) = r4 d-)(a-)) = r4
al, a2 SPEC A al, a2 SPEC A

T2 -T4 r2 - r4

dj(A) <--+--> d-2 (A) dj(A) <-----> d2 (A)

is one of <, >, <, or >, consistently within a rule, and is its inverse.

lati tude( Alaska) 11= hi I

temperature -range(A kiska) =cold

latitude(Equador) = low

temperatUre-ranae(Equaidor) =hot

Equador. Alaska SPEC place

hot > cold

low <z high

latitude(place) <-----> temperature-range(place)
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Table 17
Continued

D21 x 2Rx 2S--> DS Generalizing Implications
to Directed Dependencies

(3) di(A) < ---- > d2(A) (4) dj(A) < ---- > d-)(A)
dl(a1,) = ri <==> d-2(al) = r,) di(al) = ri <==> d2(al) = r

dl(a,2 ) = r3 <==> di(a2 ) = r4 d I(a-)) = r3 <==> d-2(a 2 ) = r4
ri -r3 ri - r3

r- r4 r-)- r4

a_,.aiSPEC A a±.la-SPEC A

latitude(place)4-- tern perat u re -ran ge(pl ace)
latitude(tropical -place )= Iow =~ temperature -ran ge toIclpceho

latitude(polar-reg-ion) = hi gh= temnperature -ran Oe( polar-re-ion)=cold
low < high
hot > cold
tropical -place, polar-region SPEC place
latitude(place)<----->ternperat ure-range(place)
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The use of inequalities with qualitative values and other kinds of
inexact or "fuzzy" categories has been studied by Zadeh (1965) and others
using his theory. Our extension of the core theory to these kinds of
statements and inferences was quite natural, and many of the implications
of this extension were understood beforehand. Nonetheless, it raised a
number of issues that are yet to be resolved, some of which are touched on
in the next section. For example, there is a tradeoff between the precision
and certainty of a referent value that pervades this kind of reasoning. We
do not yet understand how and when people prefer a precise but uncertain
answer as opposed to an imprecise but more certain one. The purpose for
which the question was asked surely plays an important role here, but the
mechanism by which that affects people's inference processes remains an

open question.
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4. Conclusion

In the revised theory we have addressed the issues raised by the

experiment that we could find solutions for. There are a number of other

issues apparent to us in the experiment and earlier protocols that we have

not yet addressed. We think they are amenable to the kind of analysis we

have been using, but the solutions were not as apparent or we did not

have the time to pursue them. We enumerate them here so the reader can

see what we think we have swept under the rug for the time being:

1. Combining variables on one side of a dependency or implication.

In the experiment subjects frequently reasoned backwards or

forwards over dependencies and implications where a number of

variables (e.g. precipitation and rivers) affected a particular

variable (e.g. water supply). Sometimes subjects treated the

variables as if they were ORed together, and sometimes as if they

were ANDed together, and sometimes as if they were additive. It

is possible these reasoning patterns can be handled by a single

combination rule with different (x and parameter values.

Alternatively, it may be necessary to develop a slightly different

set of plausible inference rules to handle each kind of

combination. We simply have not resolved the issue to our

satisfaction.

2. The tradeoff betwveen r:ine and certainty. Subjects appear to

trade off certainty about a Lelief against the range of the

referent. For example, one migmit be very certain that the

average rainfall in Louisiana is "at least moderate," somewhat less

certain that it is "heavy," still less certain that it is between 40

and 60 inches a year. In other words, for any continuous

variable subjects can always increase their certainty in a belief

by extending the range of the referent. Currently there is no way

to incorporate such tradeoffs in the theory.
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3. Merging of qualitative and quantitative reasoning. Sometimes

subjects bring in various quantitative relationships to guide their

qualitative reasoning (e.g. the Amazon jungle averages 850 or I

mile in altitude affects temperature as much as 800 miles in

latitude). There needs to be a smooth way to incorporate such

quantitative information into the way humans reason plausibly.

4. Combining certainty parameters. Collins and Michalski (1989)

carefully avoided specifying how people combine certainty

parameters to airive at an overall certainty in the conclusion. In

this paper we did specify how the numeracy parameter v can

logically be combined to derive frequency 0. It should be

possible to work out a normative theory for combining all the

parameters specified in the theory, but we have not attempted to

do so yet.

5. The extent parameter. Collins (1978) identified a parameter he

called "extent" which was particularly prevalent in temporal and

spatial inferences. It is necessary because people have a notion

of how far rainstorms vs. parades vs. continents extend in space,

and how long they extend in time. This notion is central to

people's reasonin, about space and time, but it also affects

inferences in the core theory. For example, internal organs

extend over a wider range of animals than horns or colors, so a

person is more likely to infer that an animal has a gizzard

because a similar animal has one, then one is to infer that an

animal has a horn because a similar animal has one. We have not

tried to incorporate this notion of extent into the core theory.

6. Finding relevant information in memory. The core theory of

Collins and Michalski (1989) assumed that information is found

by a marker passing search, and its impact on any question was

evaluated by the plausible reasoning theory. There is a

suggestion in the data from the experiment that each piece of

information that is found redirects the search process in memory.

We think therefore that it is possible to specif\ in more detail the
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nature of the search to find relevant information to answer any

question, but we have not yet worked out the details in this

revision of the core theory.

7. Spatial, temporal, and meta inferences. As stated in the core

theory of Collins and Michalski (1989) the protocols ale full of

plausible inferences based on spatial, temporal, and meta

knowledge. We think an extension of the core theory to cover

these inferences is possible, but it is a major enterprise that we

still are not ready to tackle.

In summary we think the experimental data suggest that we are in

the right ball park for constructing a general theory of human plausible

reasoning. However, there is still much work to be done to accomplish this

goal.
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